A genetic algorithm based approach for multi-objective hardware/software co-optimization
نویسندگان
چکیده
منابع مشابه
Messy Genetic Algorithm Based Multi-Objective Optimization 1 Messy Genetic Algorithm Based Multi-Objective Optimization: A Comparative Statistical Analysis
Many real-world scientific and engineering applications involve finding solutions to “hard” Multiobjective Optimization Problems (MOPs). Genetic Algorithms (GAs) can be extended to find acceptable MOP Pareto solutions. The intent of this discussion is to illustrate that modifications made to the Multi-Objective messy GA (MOMGA) have further improved the efficiency of the algorithm. The MOMGA is...
متن کاملGenetic algorithm for multi-objective experimental optimization
A new software tool making use of a genetic algorithm for multi-objective experimental optimization (GAME.opt) was developed based on a strength Pareto evolutionary algorithm. The software deals with high dimensional variable spaces and unknown interactions of design variables. This approach was evaluated by means of multi-objective test problems replacing the experimental results. A default pa...
متن کاملCellular Genetic Algorithm for Multi-Objective Optimization
In this paper, we show how cellular structures can be combined with a multi-objective genetic algorithm (MOGA) for improving its search ability to find Pareto-optimal solutions of multi-objective optimization problems. We propose an assignment method of a different search direction to each cell for implementing a cellular MOGA. In our cellular MOGA, every individual in each population exists in...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-SAFETY USING GENETIC ALGORITHM
Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall ...
متن کاملEntropy-based multi-objective genetic algorithm for design optimization
Obtaining a fullest possible representation of solutions to a multiobjective optimization problem has been a major concern in Multi-Objective Genetic Algorithms (MOGAs). This is because a MOGA, due to its very nature, can only produce a discrete representation of Pareto solutions to a multiobjective optimization problem that usually tend to group into clusters. This paper presents a new MOGA, o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainable Computing: Informatics and Systems
سال: 2016
ISSN: 2210-5379
DOI: 10.1016/j.suscom.2016.04.001